Illumination compensation for image-domain wavefield tomography

نویسندگان

  • Tongning Yang
  • Jeffrey Shragge
  • Paul Sava
  • P. Sava
چکیده

Wavefield tomography represents a family of velocity model building techniques based on full waveforms as the input and seismic wavefields as the information carrier. When these techniques are implemented in the image domain and use seismic images as the input, they are referred to as image-domain wavefield tomography. The objective function for image-domain approach is designed to optimize the coherency of reflections in extended common-image gathers. The function applies a penalty operator to the gathers, thus highlighting image inaccuracies due to the velocity model error. Minimizing the objective function optimizes the model and improves the image quality, by making use of the gradient of the objective function computed using the adjoint-state method. Uneven illumination is a common problem for complex geological regions, such as sub-salt, or the consequence of incomplete data. Imbalanced illumination not only creates shadow zone for migrated images, but also results in defocusing in common-image gathers even when the migration velocity model is correct. This additional defocusing violates the wavefield tomography assumption stating that the migrated images are perfectly focused in the case of the correct model. Therefore, defocusing rising from illumination mixes with defocusing rising from the model errors and degrades the model reconstruction. We address this problem by incorporating the illumination effects into the penalty operator such that only the defocusing by model errors is used for model construction. This method improves the robustness and effectiveness of wavefield tomography applied in the areas characterized by poor illumination. Our synthetic examples demonstrate that velocity models are more accurately reconstructed by our method using the illumination compensation, leading to more coherent and better focused subsurface images than those in the conventional approach without illumination compensation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Illumination compensation for subsalt image-domain wavefield tomography

Wavefield tomography represents a family of velocity model building techniques based on seismic waveforms as the input and seismic wavefields as the information carrier. For wavefield tomography implemented in the image domain, the objective function is designed to optimize the coherency of reflections in extended common-image gathers. This function applies a penalty operator to the gathers, th...

متن کامل

Subsalt wavefield tomography with illumination compensation

Wavefield tomography represents a family of velocity model building techniques based on seismic waveforms as the input and seismic wavefields as the information carrier. For wavefield tomography implemented in the image domain, the objective function is designed to optimize the coherency of reflections in extended common-image gathers. This function applies a penalty operator to the gathers, th...

متن کامل

Cascaded wavefield tomography and inversion using extended common-image-point gathers: A case study

Image-domain wavefield tomography (WT) exploits focusing characteristics of extended images for updating the velocity field. To make good use of this information, one must understand how such images behave if the migration velocity is accurate. This is not trivial because focusing depends on not only the model error, but also on the acquisition setup, the data bandwidth, and illumination variat...

متن کامل

Angle decompositions of images migrated by wavefield extrapolation

I present an extension to the angle-domain decomposition of images migrated using wavefield extrapolation. Traditionally, reflectivity is described by a 1-D function of scattering angle. I show that we can further decompose the image function of other angles related to the structure and acquisition. In the 2-D case, the reflectivity is described function of two angles, while in the 3-D case the...

متن کامل

Stable attenuation compensation in reverse-time migration

Attenuation in seismic wave propagation is a common cause for poor illumination of subsurface structures. Attempts to compensate for amplitude loss in seismic images by amplifying the wavefield may boost high-frequency components and create undesirable imaging artifacts. In this paper, rather than amplifying the wavefield directly, we develop a stable compensation operator using smooth division...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012